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L E V E R  TO THE EDITOR 

Gradient method for thermal phase transitions 

N Boissint and H J HerrmannS 
t Service de Physique ThCorique de  Saclay, 91191 Cif-sur-Yvette, France 
$ HLRZ, KFA Jiilieh Pastfach 1913, D-5170 Jdich. Gemany 

Received 21 September 1990 

Abstract. We present a new numerical method of obtaining critical temperatures and 
exponents for ferromagnetic spin models and dynamical transitions. This method is based 
on the spreading of damage in a temperature gradient. We illustrate the method on the 
two-dimensional lsing model and present new results on the + king spin glass in two 
dimensions. We also obtain new critical exponents, describing the behaviour of the width 
and the length o f  the damage front. 

- 
I ne numericai determination of criticai temperatures and criticai exponents has ied 
to the invention of many different techniques and algorithms over the last twenty years. 
Nevertheles, in this letter, we are proposing a new method based on recent understand- 
ing about the spreading of 'damage' in a thermal model [l-41, and applying it to a 
temperature gradient. 

'Damage' is defined as the 'Hamming' distance between two configurations that 
evolve under exactly the same dynamics. In the case of k ing  variables u=O, 1 the 
damage D between two configurations A and B is given by the fraction of sites having 
different values (i.e. being damaged): 

W h C K  'V is !he nsmber of si!cs of !he system. 
It has been shown [l] that if one uses, in a ferromagnetic model, heat bath dynamics 

with the same random numbers for both configurations, the probability of having a 
damaged site equals the spontaneous magnetization. In particular, all initial damage 
disappears in the paramagnetic phase after a time proportional to the relaxation time. 
In the ferromagnetic phase, however, a finite amount of damage survives in the 
thermodynamic limit and one then has D(m) + M. If one has in a system a temperature 
gradient such that one end is in the paramagnetic phase ( T >  T,) and at the other end 
is in the ferromagnetic phase ( T <  T,) the initial damage in the ferromagnetic phase 
will only spread until it reaches the critical temperature T,. Similarly, if initially one 
has damage at all temperatures, it will only completely heal within a region T >  T,. 

We consider a square lattice of size LII(L,) in tb? x- ( y - )  direction and impose 
periodic boundary conditions in the y-direction and rixed boundary conditions in the 
x-direction. Each line of fixed x-coordinate has a different temperature. On the left 
(right) boundary we impose a temperature T, < T, ( Tp > T,) and on line j :  

T ( j ) = T / +  
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This means that on each line perpendicular to the x-axis one has other values for the 
Boltzmann factors, so that technically speaking each line has its own look-up table in 
the Monte Carlo algorithm. We also consider a zeroth and a ( LII + 1)th line on which 
the spins are fixed. 

Take two lattices A and B of the type described above. On lattice A( B) we initially 
set all the spins to 1(0), i.e. D(0)  = 1. On the zeroth line the spins are fixed in the same 
way while on the (L, ,+l) th  line the fixed spins are randomly chosen but have the same 
value for both configurations A and B. We then let both systems evolve towards 
equilibrium using heat bath dynamics with the same random number sequence applied 
to A and B. After waiting several times the (nonlinear) correlation time, T.,, the system 
is considered to be in equilibrium. In our case the dominant correlation time is the 
one at T, which should scale as  a power law in L,. 

At equilibrium one finds for each Monte Carlo iteration damaged sites in the region 
T <  T,. If one says that two neighbouring damaged sites belong to the same cluster 
there is one (infinite) damage cluster connected to the left end (since on the zeroth 
line one has a fixed source of damage). To this cluster one can define an outer boundary 
or front (see figure 1) consisting of all the bonds between sites of the cluster and 
undamaged sites that are connected to the right end of the system by a path of nearest 
neighbouring undamaged sites (i.e. belonging to the infinite cluster of undamaged 
sites). The number of these bonds, I, is the length of the front. Since each bond k of 
the front has a well defined temperature Tk one can define 

1 
Tm=-X T k and (3) 

I k  

as the average temperature and the width of the front. We expect Tm+ T, and w + O  

Figure 1. Front of the infinite damage cluster as obtained in an king model on a square 
lattice with LII = L ,  = 512. 
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when the gradient 

A = (  T, - G)/LII  (4) 

vanishes, i.e. in the thermodynamic limit. 
We implemented the above algorithm using multispin coding, i.e. putting 16 sites 

in one single computer word of 64 bits of a Cray-xtm. The infinite cluster was obtained 
by burning [ 5 ] ,  i.e. by letting a front of labelled ('burned') sites spread on the cluster 

burning starts at the left end, exactly the infinite damage cluster will be burned. The 
burning can also be implemented in multispin coding by putting on one bit iff the site 
is damaged and a second one iff the site is burning at  that time step. The second bit 
at the next time step is then obtained as a logic AND of the first bit with an OR over 
the second bits of all the nearest neighbours. These logical operations are executed 
for all the bits in parallel, speeding up the process by a factor of 16. Contrary to the 
Monte Carlo update the burning cannot, however, be vectorized. 

In order to extrapolate to the thermodynamic limit we will consider our quantities 
as a function of A and L,. We can expect: 

uvCr neigh'io-urs s.uch thai siie i'Bn ai m0si be burned ai one iime siep, ifihe 

, 

T,(L,, A) =nL;""+ bA" and w(A)  = cAY ( 5 )  

where x and y I re  a prior!' Enknown er.pcnen!s 2nd e, Q and c 2'P ccns!an!s. 
It turns out that x < 1 so that the second term dominates the behaviour of T,. This 

is reflected numerically in the fact that the data depend much more strongly on the 
gradient than on L,. This can be seen in figure 2 where we plotted T,,, for the king 
model, obtained through various methods as shown by different symbols: the squares 
and diamonds were made for LII = L, in the first case with the same T, and Tr for all 
L, and in the second case by adjusting T, and Tr such that the front nearly touches 
the boundary. The stars are data for Lll << L , .  The same notation of symbols is also 
used in figure 3. 

The data in figure 2 collapse on a straight line for x = 0.55 f 0.05 which extrapolated 
to Tc=2.269*0.001, in good agreement with the exact value. In figure 3 we see that 
indeed w has the power law behaviour of ( 5 )  with an exponent y =OS1 *0.01. 
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Figure 2. Average temperature T. of  the front as a 
function of bo.r5 for the king model. The statistical 
error ban can be seen to fall inside the symbols. 

Figure 3. Log-log plot of the width (right axis) and 
I f  L ,  (left axis) as a function of  the gradient for the 
Ising model. 
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This is in good agreement with 

1 
y = i G  

which can be obtained by the following argument [6 ] .  One considers that the width 
of the front comes from damage clusters at To# T, of size ( ( T o )  that touch the front 
so that the condition wWA((Tmiw) should be fulfilled. Using the fact that the 
correlation length goes like .$(T)cc IT- TJ”,  and making a Taylor expansion around 
the critical temperature gives w W A W - ”  and thus (6). 

Let us investigate next if the front shown in figure 1 is self-affine: 

I( L, , A) - L,A-’. (7) 
In figure 3 we see in a log-log plot of I /  L ,  against A that one obtains a straight line 
of slope S =0.214*0.003 in agreement with (7). By considering that the front lives in 
a box of size t, x w/ A one can define a fractal dimension dr[7] through I - L,( w/  A)dc-l 
and this gives, using (6) and (7): 

l + V  
dr = 1 +- S 

V 

so we have d,=  1.43 +0.01. This number does not coincide with the dimension of the 
hull of the critical clusters [SI or with that of the hull of the spin-up clusters at T, [9]. 

We also made the same analysis for the f Ising spin glass on the square lattice. 
In this case no theorem is available relating the damage to thermodynamic quantities. 
Although it is generally believed that there is no thermodynamic transition for this 
model in two dimensions it has been numerically observed [IO] that using a heat bath 
there is a dynamic phase transition between a ‘frozen’ phase, where all damage heals 
as in the paramagnetic phase of the ferromagnetic model and, at low temperatures, a 
‘choice’ phase in which any infinitesimally small damage spreads to infinity. In figure 
4 we show the results we obtained for the spreading of damage in a gradient. The 
relaxation times are much longer for the spin glass compared with the ferromagnetic 
model so we started for each data point from an ordered, as well as from a disordered, 
initial configuration and made sure that both converged to the same value. From - 
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Figure 4. Same as figures 2 and 3 for the * lsing spin glass on a square lattice. 
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figure 4 we obtain Td = 2.137 iO.005 for the dynamic transition temperature, a larger 
value than found previously [lo], excluding from its error bars the critical point of 
the pure k ing  model. For the exponents we find: x=O.88, y=0.458+0.005 and 
S=0.225*0.005. ThesevaIuesgiveusing(6)and(X): U =  I.lX*O.O2andd,= 1.72*0.02. 

We have proposed a method of obtaining precise transition temperatures and critical 
exponents of the dynamical damage spreading transition. We do  this by considering 
a temperature gradient similar to the gradient in the probability that was applied to 
percolation [6 ,  111 and to the Kauffman model [12], and which in both cases also gave 
very accurate results. For the ferromagnetic king model, where an exact relation to 
the thermal phase transition is available, our method agrees with high precision with 
the exactly known numbers. We have, however, not yet found a relation between the 
fractal dimension of the damage front and known critical exponents. For the spin glass 
we confirm the existence of a damage phase transition and obtain values for the 
transition temperature, v, and the fractal dimension of the front. 
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